MATH-GA2450 Complex Analysis Course Information Mathematical Grammar and Logic Complex Numbers Polar Coordinates Complex Functions

Deane Yang

Courant Institute of Mathematical Sciences New York University

September 3, 2024

Course Information

Web Pages

- My homepage: https://math.nyu.edu/~yangd
- Course Homepage
- Course Calendar
- Textbook
 - Serge Lang, Complex Analysis
 - You can download the PDF for free, if your computer is connected to the NYU network. You can also buy a softcover edition for \$39.99 from Springer

Prerequisites: Mathematical Grammar

- Always write in complete English or mathematical sentences
- A sentence must have a subject and verb
- A mathematical sentence usually contains an object
- Sample sentences
 - (subject) equals (object)
 - (subject) is less than (object)
 - If (sentence), then (sentence)
 - There exists (object)such that (sentence)
 - For any object, (sentence)

Prerequisites: Basic Deductive Logic

- You are expected to know how to use deductive logic
- Suppose A and B are English or mathematical sentences
- You are expected to know the meaning of the following phrases:

```
A and B

A or B

A is false, i.e., not A

If A, then B, i.e., A \implies B

A if and only if B, i.e., A \iff B
```

Converse and Contrapositive

The converse of the sentence

$$A \implies B$$

 $B \implies A$

These two are **not** equivalent

► The **contrapositive** of the sentence

$$A \implies B$$

is

is

$$(\operatorname{not} B) \implies (\operatorname{not} A)$$

These two are equivalent

Quantifiers

You are expected to know the meaning of

For each (object), (sentence)

which can also be written as

 \forall (object), (sentence)

You are expected to know the meaning of

There exists (object), such that (sentence)

which can also be written as

 \exists (object), (sentence)

Negations

The negation of A and B is

(not A) or (not B)

The negation of A or B is

(not A) and (not B)

▶ The negation of if A, then B is

A and (not B)

▶ The negation of ∀(object), (sentence) is

 \exists (object), such that (negation of sentence)

▶ The negation of ∃(object) such that (sentence) is

 \forall (object), (negation of sentence)

Modus Ponens

All calculations and proofs must proceed as follows:

- Known to be true (by definition, assumption, or proof)
 - ► A
 - $\blacktriangleright A \implies B$
- True by deduction
 - ► B

Definitions Versus Theorems

- VERY VERY IMPORTANT: When studying or doing problems, make sure you know the definitions of every word and symbol
- Always try to solve problem (e.g., doing a proof) using ONLY definitions
- Use a theorem ONLY if absolutely necessary

Complex Numbers

 \blacktriangleright Set of complex numbers is denoted $\mathbb C$

► A complex number is denoted

$$z = x + iy$$
,

where $x, y \in \mathbb{R}$

- Complex addition and multiplication
 - Treat i as a variable
 - Do calculation using standard rules of polynomial algebra
 - Simplify using the assumption that $i^2 = -1$

Properties of Complex Addition and Multiplication

- Addition is associative and commutative
- Multiplication is associate and commutative
- 0 = 0 + i0 is the identity element for addition
- The additive inverse of z = x + iy is

$$-z = -x - iy$$

▶ 1 = 1 + i0 is the identity element for multiplication

Examples

$$(2+i3) + (4-i) = 2 + 4 + i(3-1)$$

= 6 + i2
$$(2+i3)(-1+i) = 2(-1) + 2i + i3(-1) + i3(i)$$

= -2 + 2i - 3i + i²3
= -2 - 3 + 2i - 3i
= -1 - i
$$(x + iy) + (u + iv) = (x + u)$$

$$(x + iy)(u + iv) = xu + x(iv) + iy(u) + (iy)(iv)$$

= xu + ixv + iyu + i²yv
= (xu - yv) + i(xv + yu)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conjugate of Complex Number

• Conjugate of a complex number z = x + iy is

$$\bar{z} = x - iy$$

For each $z, w \in \mathbb{C}$,

$$\overline{z+w} = \overline{z} + \overline{w}$$
$$\overline{zw} = \overline{z}\overline{w}$$
$$\overline{\overline{z}} = z$$

Magnitude of Complex Number

Magnitude squared of z is

$$|z|^2 = z\overline{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2$$

• Since $|z|^2$ is always real, can define magnitude of z to be

$$|z| = \sqrt{|z|^2}$$

Examples
$$|2 + i3|^{2} = 2^{2} + 3^{2} = 13$$

$$|zw|^{2} = zw\overline{z}\overline{w}$$

$$= zw\overline{z}\overline{w}$$

$$= z\overline{z}w\overline{w}$$

$$= |z|^{2}|w|^{2}$$

$$|z + w|^{2} = (z + w)(\overline{z} + \overline{w})$$

$$= z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w}$$

$$= |z|^{2} + z\overline{w} + \overline{z}w + |w|^{2}$$

$$|zw|^{2} + z\overline{w} + \overline{z}w + |w|^{2}$$

Example of Complex Division

$$\frac{2+i3}{1-i4} = \left(\frac{2+i3}{1-i4}\right) \left(\frac{1+i4}{1+i4}\right)$$
$$= \frac{(2+i3)(1+i4)}{(1-i4)(1+i4)}$$
$$= \frac{2-12+i(3+8)}{1+16}$$
$$= \frac{-10+i11}{17}$$
$$= \frac{-10}{17} + i\frac{11}{17}$$

<ロト < 部 ト < 言 ト < 言 ト 言 の < で 15 / 27

Complex Division

• If
$$z = x + iy$$
 and $w = u + iv \neq 0$, then

$$\frac{z}{w} = \frac{x + iy}{u + iv}$$
$$= \left(\frac{x + iy}{u + iv}\right) \left(\frac{u - iv}{u - iv}\right)$$
$$= \frac{(x + iy)(u - iv)}{(u + iv)(u - iv)}$$
$$= \frac{xu + yv + i(yu - xv)}{u^2 + v^2}$$
$$= \frac{xu + yv}{u^2 + v^2} + i\frac{yu - xv}{u^2 + v^2}$$

Equivalently,

$$\frac{z}{w} = \left(\frac{z}{w}\right) \left(\frac{\bar{w}}{\bar{w}}\right)$$
$$= \frac{z\bar{w}}{|w|^2}$$

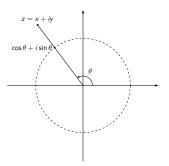
16 / 27

Reciprocal of Complex Number

▶ If
$$z = x + iy \neq 0$$
, then its reciprocal is

$$z^{-1} = \frac{1}{z}$$
$$= \frac{\overline{z}}{|z|^2}$$
$$= \frac{x - iy}{x^2 + y^2}$$

Polar Coordinates



Recall that polar coordinates are given by

$$(x, y) = (r \cos \theta, r \sin \theta) = r(\cos \theta, \sin \theta),$$

where $r = \sqrt{x^2 + y^2}$

• Therefore, each complex number z = x + iy can be written as

$$z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta),$$

where r = |z|

Complex Exponential

▶ Recall that if $x \in \mathbb{R}$, then

$$e^{x} = \sum_{k=0}^{k=\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \cdots$$

▶ If $z \in \mathbb{C}$, we can define the exponential of z to be

$$e^{z} = \sum_{k=0}^{k=\infty} \frac{z^{k}}{k!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \cdots$$

Properties

$$e^{z+w}=e^ze^w$$

 $e^{kz}=(e^z)^k$ if $k\in\mathbb{Z}$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 19/27

Euler's Formula

► If
$$z = i\theta$$
, then

$$e^{i\theta} = \sum_{k=0}^{k=\infty} \frac{(i\theta)^k}{k!}$$

$$= 1 + i\theta + \frac{(i\theta)^2}{2} + \frac{(i\theta)^3}{3!} + \cdots$$

$$= 1 + i\theta - \frac{\theta^2}{2} - i\frac{\theta^3}{3!} + \cdots$$

$$= \left(1 - \frac{\theta^2}{2} + \frac{\theta^4}{4!} - \cdots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right)$$

$$= \sum_{j=0}^{j=\infty} (-1)^j \frac{\theta^{2j}}{(2j)!} + i\sum_{j=0}^{\infty} (-1)^j \frac{\theta^{2j+1}}{(2j+1)!}$$

$$= e^{i\theta}$$

► Therefore, we define

$$e^{i\theta} = \cos\theta + i\sin\theta_{\text{cond}} + i\sin\theta_{\text{cond}} + i\sin\theta_{\text{cond}}$$

Polar Form of Complex Number

• Any $z \in \mathbb{C}$ can be written as

$$z = re^{i\theta},$$

where r = |z|

Key examples

$$e^{irac{\pi}{2}}=i$$

 $e^{i\pi}=-1$
 $e^{i2\pi}=1$

► In general,

$$e^{i heta}=1\iff heta=2\pi j$$
 for some $j\in\mathbb{Z}$

• Therefore, if $z = re^{i\theta} = se^{i\phi}$ is nonzero, then

$$1 = \frac{re^{i\theta}}{se^{i\phi}} = \frac{r}{s}e^{i(\theta-\phi)},$$

which implies r = s and $\theta = \phi + 2\pi j$ for some integer j

Angle Addition Formula

 Observe that by the angle addition formulas for sine and cosine,

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

= $\cos\alpha\cos\beta - \sin\alpha\sin\beta + i(\sin\alpha\cos\beta + \cos\alpha\sin\beta)$
= $\cos\alpha(\cos\beta + i\sin\beta) + \sin\alpha(-\sin\beta + i\cos\alpha)$
= $(\cos\alpha + i\sin\alpha)(\cos\beta + i\sin\beta)$
= $e^{i\alpha}e^{i\beta}$

• Therefore, if $z = re^{i\theta}$, then

$$e^{i\phi}z = e^{i\phi}re^{i\theta} = re^{i(\theta+\pi)}$$

• Multiplying z by $e^{i\phi}$ rotates z counterclockwise by ϕ radians

Roots of a Complex Number

- Let $z = r^{i(\theta + 2\pi j)}$ and k be a nonzero integer
- A k-th root of z is a complex number $w = se^{i\phi}$ such that

$$re^{i(\theta+2\pi j)}=z=w^k=(se^{i\phi})^k=s^ke^{ik\phi}$$

This implies that

$$r = s^k$$
 and $\theta + 2\pi j = k\phi$

It follows that if

$$s={\it r}^{1/k}$$
 and $\phi=rac{ heta}{k}+2\pi\left(rac{j}{k}
ight)$

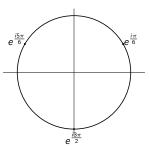
then $w^k = z$ and therefore w is a k-th root

Examples

A square root of *i* is
$$e^{i\frac{\pi}{4}} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}$$

A cube root of *i* is $e^{i\frac{\pi}{6}}\cos\frac{\pi}{6} + i\sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + i\frac{1}{2}$

Cube Roots of *i*



• The cube roots of $i = e^{\frac{i\pi}{2}} = e^{\frac{i\pi}{2} + 2\pi} = e^{\frac{i\pi}{2} + 4\pi}$ are

$$e^{\frac{i\pi}{6}} = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} + \frac{i}{2}$$
$$e^{\frac{i5\pi}{6}} = \cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right) = \frac{-\sqrt{3}}{2} + \frac{i}{2}$$
$$e^{\frac{i3\pi}{2}} = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right) = -i$$

24 / 27

3

Complex Functions

- A complex function is a function (i.e., map) whose domain is a subset of C and codomain is C
- If D ⊂ C, a function f : D → C can always be written in terms of two real functions of two variables,

$$f(x+iy) = g(x,y) + ih(x,y)$$

- If a function f : D → C can be written as a formula, the formula can be written in terms of x and y or in terms of z and z̄
- Examples:

$$f(z) = z^{2} = (x + iy)^{2} = x^{2} - y^{2} + i2xy$$

$$f(z) = \overline{z} = x - iy$$

$$f(z) = x = \frac{z + \overline{z}}{2}$$

25 / 27

Examples of Complex Functions

▶ Power function: Given a nonnegative integer *n*,

$$p: \mathbb{C} \to \mathbb{C}$$
$$z \mapsto z^n$$

▶ Given a nonnegative integer *n*,

$$\rho: \mathbb{C} \to \mathbb{C}$$
$$x + iy \mapsto x^n + iy^n$$

Reciprocal function:

$$\rho: \mathbb{C} \setminus \{0\} \to \mathbb{C}$$
$$z \mapsto \frac{1}{z}$$

Conjugation:

$$\Xi: \mathbb{C} \to \mathbb{C}$$
$$z \mapsto \bar{z}$$

26 / 27

イロト 不得 トイヨト イヨト 二日

Cube Root Function

Observe that the map

$$egin{aligned} (0,\infty) imes [0,2\pi)
ightarrow \mathbb{C} \ (r, heta) \mapsto r e^{i heta} \end{aligned}$$

is bijective

▶ Therefore, we can define a cube root function to be

$$\mathbb{C} o \mathbb{C}$$

 $re^{i heta} \mapsto r^{1/3} e^{irac{ heta}{e}},$

where $0 \le \theta < 2\pi$