MATH-GA2450 Complex Analysis Topology of C Limit of Sequence Convergent and Cauchy Sequences

Deane Yang

Courant Institute of Mathematical Sciences New York University

September 5, 2024

Length and Distance

• Recall that the **magnitude** or **length** of $z = x + iy \in C$ is

$$|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}$$

The distance from z to w is

$$d(z,w) = |w-z| = |z-w|$$

The open disk of radius r cenetered at x is

$$D(z,r) = \{ w \in \mathbb{C} : d(z,w) < r \} = \{ w \in \mathbb{C} : |w-z| < r \}$$

The closed disk of radius r cenetered at x is

$$\overline{D}(z,r) = \{w \in \mathbb{C} : d(z,w) < r\} = \{w \in \mathbb{C} : |w-z| \le r\}$$

Open and Closed Sets

▶ $S \subset \mathbb{C}$ is **open** if for each $z \in S$, there is an r > 0 such that

$$D(z,r) \subset S$$

- $T \subset \mathbb{C}$ is **closed** if its complement $\mathbb{C} \setminus T$ is open
- Examples: If r > 0, then
- D(z, r) is open
- $\blacktriangleright \overline{D}(z,r)$ is closed
- \blacktriangleright $\mathbb{C} \setminus D(z, r)$ is closed
- $\mathbb{C}\setminus\overline{D}(z,r)$ is open

Bounday, Closure, Inteior of a Subset

• A point $z \in \mathbb{C}$ is a **boundary point** of $S \subset \mathbb{C}$ if for any r > 0,

$$D(z,r) \cap S \neq \emptyset$$

- The set of all boundary points of S ⊂ is the boundary of S, which is denoted by ∂S
- The closure of S is

$$\overline{S} = S \cup \partial S$$

The smallest closed set containing S

- ▶ ∂S and \overline{S} are closed sets
- The interior of *S* is $S \setminus \partial S$

Bounded Sets

• $S \subset \mathbb{C}$ is **bounded** if there exists r > 0 such that

 $S \subset D(0, r),$

|z| < r

i.e., if for every $z \in S$,

Examples

For any $z \in \mathbb{C}$ and r > 0, D(z, r) is bounded

The open upper half plane

$$H = \{x + iy \in \mathbb{C} : y > 0\}$$

is unbounded

Limit of a Sequence

- Let \mathbb{Z}_+ denote the set of positive integers
- A sequence is a function $S : \mathbb{Z}_+ \to \mathbb{C}$
- We usually denote $z_n = S(n)$ and write the sequence as

$$(z_n: n \in \mathbb{Z}_+)$$

▶ $z \in \mathbb{C}$ is the **limit** of a sequence $(z_n : n \in \mathbb{Z}_+)$ if for any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{Z}_+$ such that

$$\forall n \geq N_{\epsilon}, \ z_n \in D(z_{\infty}, \epsilon)$$

If so, we write

$$\lim_{n\to\infty} z_n = z$$

The definition can also be stated as: z ∈ C is the limit of a sequence (z_n : n ∈ Z₊) if for any ε > 0, there exists N_ε ∈ Z₊ such that

$$\forall n \ge N_{\epsilon}, \ |z_n - z| \le \epsilon$$

Convergent and Cauchy Sequences

- If a sequence has a limit, the limit is unique
- A sequence with a limit is called convergent
- A sequence (z_n : n ∈ Z₊) is Cauchy if for any ε > 0, there exists N_ε ∈ Z₊ such that

$$\forall m, n \geq N_{\epsilon}, |z_n - z_m| < \epsilon$$

A sequence is Cauchy if and only if it is convergent