MATH-GA2450 Complex Analysis Complex Differentiability Cauchy-Riemann Equations

Deane Yang

Courant Institute of Mathematical Sciences New York University

September 12, 2024

1 / 18

 2990

Real Differentiability

▶ Recall that if $I \subset \mathbb{R}$ is an open interval, a function $f : I \to \mathbb{R}$ is **differentiable** at $x \in I$ if the limit

$$
\lim_{t\to x}\frac{f(t)-f(x)}{t-x}
$$

exists

▶ I.e., for any sequence $(x_k : k \ge 0) \subset I \setminus \{x\}$ such that

$$
\lim_{k\to\infty}x_k=x,
$$

the limit

$$
\lim_{k\to\infty}\frac{f(x_k)-f(x)}{x_k-x}
$$

exists

If so, the **derivative** of f at x is defined to be

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}
$$

▶ Immediate consequence: If f is differentiable at $x \in I$, then it is continuous at x $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

Complex Differentiability

▶ Given an open $U \subset \mathbb{C}$, a function $f: U \to \mathbb{C}$ is **differentiable** at $z \in U$ if

$$
\lim_{w\to z}\frac{f(w)-f(z)}{w-z}
$$

exists

 \blacktriangleright If so, the **derivative** of f at z is defined to be the value of the limit and denoted

$$
f'(z)
$$
 or $\frac{df}{dz}(z)$

 \blacktriangleright Immediate consequence: If f is differentiable at z, then it is continuous at z

Basic Properties of Derivatives

- If $f: U \to \mathbb{C}$ is constant, then for any $z \in U$, $f'(z) = 0$
- ▶ Sum rule: If f and g are differentiable at z, then so is $f + g$ and

$$
(f+g)'(z) = f'(z) + g'(z)
$$

• Product rule: If f and g are differentiable at z, then so is fg and

$$
(fg)'(z) = f'(z)g(z) + f(z)g'(z)
$$

 \blacktriangleright Quotient rule: If f and g are differentiable at z and $g(z) \neq 0$, then f/g is differentiable at z and

$$
\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{(g(z))^2}
$$

 \triangleright Chain rule: If f is differentiable at z and g is differentiable at $f(z)$, then

$$
(g \circ f)'(z) = g'(f(z))f'(z)
$$

Holomorphic Functions

- ▶ A function $f: U \to \mathbb{C}$, where $U \subset \mathbb{C}$ is open, is **differentiable** or **holomorphic** on U if it is differentiable at each $z \in U$
- A holomorphic function $f: U \to V$, where U, V are open, is a holomorphic isomorphism if there exists a holomorphic function $g: V \to U$ such that

$$
g \circ f = id_{U} \text{ and } f \circ g = id_{V}
$$

Complex Versus Real Differentiability (Part 1)

▶ A complex function $f: U \to \mathbb{C}$ can be written in terms of real functions u and v in two variables as follows:

$$
\forall x + iy \in U, \ f(x + iy) = u(x, y) + iv(x, y)
$$

 \blacktriangleright The complex difference quotient can be written as

$$
\frac{f(w) - f(z)}{w - z} = \frac{(u(s, t) + iv(s, t)) - (u(x, y) + iv(x, y))}{(s + it) - (x + iy)} \n= \frac{(u(s, t) - u(x, y)) + i(v(s, t) - v(x, y))}{(s - x) + i(t - y)}
$$

▶ Suppose that $f'(z) = a + ib$

▶ Therefore, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$
|w-z| \le \delta \implies \left|\frac{f(w)-f(z)}{w-z}-(a+ib)\right| \le \epsilon
$$

6 / 18

Complex Versus Real Differentiability (Part 2)

 \blacktriangleright This is equivalent to

$$
\sqrt{(s-x)^2 + (t-y)^2} \le \delta
$$

\n
$$
\implies \left| \frac{(u(s,t) - u(x,y)) + i(v(s,t) - v(x,y))}{(s-x) + i(t-y)} - (a+ib) \right| \le \epsilon
$$

In particular, if $t = y$, then this implies that

$$
|s - x| \leq \delta
$$

\n
$$
\implies \left| \frac{(u(s, y) - u(x, y)) + i(v(s, y) - v(x, y))}{s - x} - (a + ib) \right| \leq \epsilon
$$

\n
$$
\implies \left| \frac{u(s, y) - u(x, y)}{s - x} - a + i \left(\frac{v(s, y) - v(x, y)}{s - x} - b \right) \right| \leq \epsilon
$$

\n
$$
\implies \left| \frac{u(s, y) - u(x, y)}{s - x} - a \right| + \left| \frac{v(s, y) - v(x, y)}{s - x} - b \right| \leq \epsilon
$$

メロトメ 御 メメ きょくきょうき Ω 7 / 18

Complex Versus Real Differentiability (Part 3)

 \blacktriangleright Therefore, if f is differentiable at $z = x + iy$, then for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$
|s - x| \leq \delta
$$

\n
$$
\implies \left| \frac{u(s, y) - u(x, y)}{s - x} - a \right| \leq \epsilon \text{ and } \left| \frac{v(s, y) - v(x, y)}{s - x} - b \right| \leq \epsilon
$$

 \blacktriangleright It follows that

$$
\lim_{s \to x} \frac{u(s,y) - u(x,y)}{s - x} = a \text{ and } \lim_{s \to x} \frac{v(s,y) - v(x,y)}{s - x} = b
$$

 \blacktriangleright In other words, if we denote the partial derivatives of u and v with respect to x by by u_x and v_x , then

$$
u_x(x, y) = a
$$
 and
$$
v_x(x, y) = b
$$

メロトメ 御 トメ 差 トメ 差 トー 差 8 / 18

Complex Versus Real Differentiability (Part 4)

 \blacktriangleright The above can be written more briefly as follows:

$$
f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} \n= \lim_{s \to x} \left(\frac{u(s, y) - u(x, y)}{s - x} \right) + i \left(\frac{v(s, y) - v(x, y)}{s - x} \right) \n= u_x(x, y) + iv_x(x, y)
$$

▶ The same calculation with $s = x$ and $t \rightarrow y$ gives

$$
f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z}
$$

=
$$
\lim_{t \to y} \left(\frac{u(x, t) - u(x, y)}{i(t - y)} \right) + i \left(\frac{v(x, t) - v(x, y)}{i(t - y)} \right)
$$

= $v_y(x, y) - iu_x(x, y)$

イロメ 不倒 メイヨメ 不思 メーヨー 9 / 18

$Holomorphic \implies Cauchy-Riemann Equations$

- \blacktriangleright Therefore, if $f = u + iy$ is complex differentiable at $z = x + iy$, then
	- ▶ Partial derivatives of u and v at (x, y) exist ▶ AND

 $u_x = v_y$ and $u_y = -v_x$

- \blacktriangleright These are called the Cauchy-Riemann equations
- \triangleright Complex differentiability is a much stronger property than real differentiability

Cauchy-Riemann Equations \implies Holomorphic

▶ Let $O \subset \mathbb{C}$ be open and let

$$
\widehat{O} = \{ (x, y) : x + iy \in O \} \subset \mathbb{R}^2
$$

▶ Let $u : \widehat{O} \to \mathbb{R}$ and $v : \widehat{O} \to \mathbb{R}$ be C^1 functions such that

$$
u_x = v_y \text{ and } u_y = v_x
$$

▶ Let $f: O \to \mathbb{C}$ be given by

$$
f(x + iy) = u(x, y) + iv(x, y)
$$

 \blacktriangleright To prove that f is holomorphic, need to show that for each $z \in \mathcal{O}$.

$$
\lim_{w\to z}\frac{f(w)-f(z)}{w-z}
$$

exists

メロトメ 御 トメ 差 トメ 差 トー 差 11 / 18

Differential of a 2-Dimensional Map

▶ Let $\widehat{O}\subset\mathbb{R}^2$ be open and consider a map $\mathcal{F}:\widehat{O}\to\mathbb{R}^2,$ where

$$
F(x,y)=(u(x,y),v(x,y))
$$

▶ Given $(x, y) \in \widehat{O}$ and a matrix

$$
M = \begin{bmatrix} a & c \\ b & d \end{bmatrix},
$$

let

$$
E(s,t) = F(s,t) - F(x,y) - M(s-x,t-y)
$$

=
$$
\begin{bmatrix} u(s,t) - u(x,y) \\ v(s,t) - v(x,y) \end{bmatrix} - \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} s-x \\ t-y \end{bmatrix}
$$

Recall that F is **differentiable** at (x, y) if there exists a matrix M such that

$$
\lim_{(s,t)\to(x,y)}\frac{|E(s,t)|}{|(s,t)|}=0.
$$

Jacobian of a Differentiable Map

If F is differentiable at x, then the matrix M is called the **Jacobian of F at** (x, y) and denoted $DF(x, y)$

▶ Moreover,

$$
DF(x, y) = \begin{bmatrix} u_x(x, y) & u_y(x, y) \\ v_x(x, y) & v_y(x, y) \end{bmatrix}
$$

Cauchy-Riemann Equations \implies Holomorphic

▶ Let $F = (u, v) : \widehat{O} \to \mathbb{R}^2$ be a map that is differentiable at $(x, y) \in O$

▶ Assume that the Cauchy-Riemann equations hold:

$$
u_x = v_y \text{ and } u_y = v_x
$$

 \blacktriangleright Let $f(x + iy) = u(x, y) + iv(x, y)$

▶ Claim: f is complex differentiable at $z = x + iy$

Proof that f is Complex Differentiable at $x + iy$

 \blacktriangleright The Cauchy-Riemann equations imply that

$$
DF(x,y) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix},
$$

where $a = u_x = v_y$ and $b = v_x = -u_y$

▶ Therefore,

$$
E(s,t) = F(s,t) - F(x,y) - DF(x,y)(s-x,t-y)
$$

=
$$
\begin{bmatrix} u(s,t) - u(x,y) - (a(s-x) - b(t-y)) \\ v(s,t) - v(x,y) - (b(s-x) + a(t-y)) \end{bmatrix}
$$

 \blacktriangleright F differentiable implies

$$
\lim_{(s,t)\to(x,y)}\frac{|E(s,t)|}{|(s-x,t-y)|}=0
$$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇ 15 / 18

Proof that f is Complex Differentiable at $x + iy$

▶ On the other hand,

$$
f(w) - f(z) - (a + ib)(w - x)
$$

= $u(s, t) - u(x, y) + i(v(s, t) - v(x, y))$
- $((a + ib)(s - x) + i(t - y))$
= $u(s, t) - u(x, y) - a(s - x) + b(t - y)$
+ $i(v(s, t) - v(x, y) - b(s - x) - a(t - y))$

▶ Therefore,

$$
|f(w) - f(z) - (a + ib)(w - z)| = |E(s, t)|
$$

イロト 不優 トメ 差 トメ 差 トー 差 Ω 16 / 18

Proof that f is Complex Differentiable at $x + iy$

 \blacktriangleright It follows that

$$
\lim_{w \to z} \left| \frac{f(w) - f(z)}{w - z} - (a + ib) \right|
$$
\n
$$
= \lim_{w \to z} \left| \frac{f(w) - f(z) - (a + ib)(w - z)}{w - z} \right|
$$
\n
$$
= \frac{|f(w) - f(z) - (a + ib)(w - z)|}{|w - z|}
$$
\n
$$
= \frac{|E(s, t)|}{|(s - x, t - y)|}
$$
\n
$$
= 0
$$

 \blacktriangleright This proves that f is differentiable at z and

$$
f'(z) = a + ib = u_x + iv_x = v_x - iu_y
$$

イロト イ団 トメ 差 トメ 差 トー 差 Ω 17 / 18

Basic Example: Linear Function

▶ The simplest non-constant function $f: \mathbb{C} \to \mathbb{C}$ is a linear function:

$$
f(x+iy) = ax + cy + i(bx + dy)
$$

 \blacktriangleright $f = u + iv$, where

$$
u(x, y)ax + cy \text{ and } v(x, y) = bx + dy
$$

 \blacktriangleright The partial derivatives of u and v are

$$
u_x = a, \ u_y = c, \ v_x = b, \ v_y = d
$$

▶ f is holomorphic if and only if $a = d$ and $c = -b$ and therefore

$$
f(x + iy) = ax - by + i(bx + ay) = (a + ib)(x + iy),
$$

i.e.,

,

$$
f(z) = \alpha z
$$
, where $\alpha = a + ib$ and $z = x + iy$
\n $\lim_{z \to a + iy \to z} \frac{\partial}{\partial z} = \lim_{z \to a} \frac{\partial}{\partial z}$