MATH-GA2450 Complex Analysis Ratio of Convergence for Product of Power Series Analytic Functions Uniqueness of Power Series

Deane Yang

Courant Institute of Mathematical Sciences New York University

September 24, 2024

Product of Power Series (Part 1)

Consider two power series

$$\sum_{k=0}^{\infty} a_k z^k \text{ with radius of convergence } R > 0$$
$$\sum_{k=0}^{\infty} b_k z^k \text{ with radius of convergence } S > 0$$

If |z| < min(R, S), then the power series converge absolutely
 I.e.,

$$A = \sum_{k=0}^{\infty} |a_k z^k|$$
 and $B = \sum_{k=0}^{\infty} |b_k z^k|$

converge

• We want to show that if $|z| < \min(R, S)$, then the series

$$\sum_{k=0}^{\infty} c_k z^k$$
 where $c_k = \sum_{j=0}^k a_j b_{k-j}$

converges absolutely

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 2/10

Product of Power Series (Part 2)

• (math.stackexchange.com) Assume $|z| < \min(R, S)$ and let

$$C_{N} = \sum_{k=0}^{N} |c_{k}z^{k}|$$

$$= \sum_{k=0}^{N} \left| \sum_{j=0}^{k} a_{j}b_{k-j}z^{k} \right|$$

$$\leq \sum_{k=0}^{N} \left(\sum_{j=0}^{k} (|a_{j}z^{j}||b_{k-j}z^{k-j}|) \right)$$

$$= \sum_{j=0}^{N} |a_{j}||z|^{j} \sum_{i=0}^{N-j} |b_{i}||z|^{i}$$

$$\leq \sum_{j=0}^{N} |a_{j}||z|^{j}B$$

$$\leq AB$$

3/10

Product of Power Series (Part 3)

- The sequence $(C_N : N \ge 0)$ is increasing and bounded
- Lemma: A bounded increasing sequence of reals converges
- It follows that if $|z| < \min(R, S)$, then

$$\sum_{k=0} |c_k z^k| \text{ converges,}$$

Therefore, the radius of convergence for

$$\sum_{k=0}^{\infty} c_k z^k$$

is at least min(R, S)

Complex Analytic Functions

• Let
$$O \subset \mathbb{C}$$
 be open

A function $f : O \to \mathbb{C}$ is (complex) analytic if for each $z_0 \in O$, there exists r > 0 and a power series

$$\sum_{k=0}a_k(z-z_0)^k$$

such that for any $z \in D(z_0, r)$, the power series converges absolutely and

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

Uniqueness of Power Series

• Given an analytic function $f: O \rightarrow \mathbb{C}$ and $z_0 \in O$, suppose

$$f(x) = \sum_{k=0}^{\infty} a_k (z_{-0})^k = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

Is it true that

$$\forall k \geq 0, \ a_k = b_k?$$

• Equivalently, if we set $c_k = b_k - a_k$, does there exist a power series

$$\sum_{k=0}^{\infty} c_k (z-z_0)^k$$

that is equal to zero on an open set containing 0 but has at least one nonzero coefficient c_k ?

Power Series that is Nonzero at Origin (Part 1)

Consider a power series with positive radius of convergence R,

$$\sum_{k=0}^{\infty} c_k z^k \text{ such that } c_0 \neq 0,$$

The series

$$M = \sum_{k=1}^{\infty} |c_k| r^{k-1} = \frac{1}{r} \left(\sum_{k=0}^{\infty} |c_k| r^k - |c_0| \right)$$

converges

Power Series that is Nonzero at Origin (Part 2)

$$\begin{aligned} \left| \sum_{k=0}^{\infty} c_k z^k \right| &= \left| c_0 + z \sum_{k=1}^{\infty} c_k z^{k-1} \right| \ge |c_0| - \left| z \sum_{k=1}^{\infty} c_k z^{k-1} \right| \\ &\ge |c_0| - |z| \sum_{k=1}^{\infty} |c_k| |z|^{k-1} \ge |c_0| - s \sum_{k=1}^{\infty} |c_k| r^{k-1} \\ &\ge |c_0| - Ms \end{aligned}$$

• If $s < \frac{|c_0|}{2M}$, then for all $z \in D(0, s)$,

$$\left|\sum_{0}^{\infty} c_k z^k\right| > \frac{|c_0|}{2} > 0$$

• Therefore, if
$$z \in D(0, s)$$
, then $\sum_{k=0}^{\infty} c_k z^k \neq 0$

Nonzero Power Series that Vanishes at Origin

Consider a power series

$$\sum_{k=k_0}^{\infty} c_k z^k = z^{k_0} \sum_{k=k_0} c_k z^{k-k_0} = z^{k_0} \sum_{j=0}^{\infty} c_{k_0+j} z^j,$$

where $c_{k_0} \neq 0$

We have shown that there exists s > 0 such that if |z| < s, then

$$\sum_{j=0}^{\infty} c_{k_0+j} z^j \neq 0$$

• Therefore, if $z \in D(0, s) \setminus \{0\}$, then

$$\sum_{k=k_0}^{\infty} c_k z^k \neq 0$$

イロン 不得 とうほう イロン 二日

Contrapositive

• If there exists a sequence $(z_j : j \ge 1)$ such that

$$\lim_{j\to\infty} z_k = 0 \,\, \text{and} \,\, \sum_{k=0}^\infty c_k z_j^k = 0,$$

then for all $k \ge 0$, $c_k = 0$

Corollary: If there exists an open O ⊂ C containing z₀ and a power series

$$\sum_{k=0}^{\infty} c_k (z-z_0)^k$$

that vanishes for all $z \in O$, then $c_k = 0$ for all $k \ge 0$

Corollary: If there exists an open O ⊂ C containing z₀ and two power series such that

$$\sum_{k=0}^{\infty}a_k(z-z_0)^k=\sum_{k=0}^{\infty}c_k(z-z_0)^k \text{ for all } z\in O,$$

then $a_k = b_k$ for all $k \ge 0$

10 / 10