MATH-GA2450 Complex Analysis Contour Integrals

Deane Yang

Courant Institute of Mathematical Sciences New York University

October 3 2024

1 / 25

 2990

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할)

Integral of z^n Along Unit Circle

 $▶$ Let $c : [0, 2\pi] \rightarrow \mathbb{C}$ be a parameterization of the unit circle given by

$$
c(t)=e^{it}
$$

▶ Given $n \in \mathbb{Z}$, by the definition of the integral along a \mathbb{C}^1 curve,

$$
\int_{c} z^{n} dz = \int_{t=0}^{t=2\pi} (c(t))^{n} c'(t) dt
$$

$$
= \int_{t=0}^{t=2\pi} (e^{it})^{n} i e^{it} dt
$$

$$
= \int_{t=0}^{t=2\pi} i e^{i(n+1)t} dt
$$

Integral of z^n Along Unit Circle for $n \neq -1$ (Part 1)

▶ If $n \neq -1$, then

$$
\frac{d}{dt}\frac{e^{i(n+1)t}}{n+1} = ie^{i(n+1)t}
$$

and therefoe by the Fundamental Theorem of Calculus,

$$
\int_{c} z^{n} dz = \int_{t=0}^{t=2\pi} i e^{i(n+1)t} dt
$$

$$
= \frac{e^{i(n+1)t}}{n+1} \Big|_{t=0}^{t=2\pi}
$$

$$
= \frac{e^{i(n+1)2\pi} - e^{0}}{n+1}
$$

$$
= 0
$$

メロトメ 御 トメ 重 トメ 重 トー 重 Ω 3 / 25

Integral of z^n Along Unit Circle for $n \neq -1$ (Part 2)

• If
$$
n \neq -1
$$
, then

$$
\frac{d}{dz} \left(\frac{z^{n+1}}{n+1} \right) = z^n
$$

and therefore by the Fundamental Theorem of Calculus

$$
\int_{c} z^{n} dz = \frac{z^{n+1}}{n+1} \Big|_{c(0)}^{c(2\pi)}
$$
\n
$$
= \frac{(c(2\pi))^{n+1}}{n+1} - \frac{(c(0))^{n+1}}{n+1} = \frac{e^{i2(n+1)}}{n+1} - \frac{e^{0}}{n+1}
$$
\n
$$
= 0
$$

4 / 25

メロメ メタメ メミメ メミメー ミー

Integral of z^{-1} Along Unit Circle

$$
\blacktriangleright \frac{d}{dt}e^{it}=ie^{it}
$$

 \blacktriangleright By the definition of the integral along the path c ,

$$
\int_{c} \frac{1}{z} dz = \int_{t=0}^{t=2\pi} \frac{1}{c(t)} c'(t) dt
$$

$$
= \int_{t=0}^{t=2\pi} \frac{1}{e^{it}} ie^{it} dt
$$

$$
= i \int_{t=0}^{t=2\pi} 1 dt
$$

$$
= 2\pi i
$$

This shows that
$$
\frac{1}{z}
$$
 has no antiderivative on $\mathbb{C}\setminus\{0\}$

Contour Integral Along Oriented Curve

▶ By definition, if $F : [a, b] \rightarrow \mathbb{C}$ is continuous, then

$$
\int_{t=b}^{t=a} F(t) dt = - \int_{t=a}^{t=b} F(t) dt
$$

▶ Given a continuous curve $c : [a, b] \rightarrow \mathbb{C}$, define

$$
-c : [b, a] \to \mathbb{C}
$$

$$
t \mapsto c(t)
$$

▶ Given $c : [0, 1] \rightarrow \mathbb{C}, -c : [1, 0] \rightarrow \mathbb{C}$ can also be parameterized by

$$
\begin{aligned} \widetilde{c}:[0,1] &\to {\mathbb C} \\ t &\mapsto c(1-t) \end{aligned}
$$

Converse To Fundamental Theorem of Calculus (Part 1)

▶ Let $O \subset \mathbb{C}$ be nonempty, open, and connected

J.

▶ Let $f: O \to \mathbb{C}$ be a continuous function such that for any closed piecewise C^1 curve $c:[a,b]\rightarrow O,$

$$
\int_{c} f(z) dz = 0
$$

▶ Define $F: O \to \mathbb{C}$ as follows:

- ▶ Fix $z_0 \in O$
- ▶ For each $z \in O$, let $c : [0,1] \rightarrow O$ be a piecewise C^1 curve such that $c(0) = z_0$ and $c(1) = z$

 \blacktriangleright Define

$$
F(z) = \int_{c} f(z) dz
$$

Converse To Fundamental Theorem of Calculus (Part 2)

▶ Let $c_1 : [0,1] \rightarrow O$, $c_2 : [0,1] \rightarrow \mathbb{C}$ be piecewise C^1 curves such that

$$
c_1(0) = c_2(0) = z_0 \text{ and } c_1(1) = c_2(1) = z
$$

 \blacktriangleright The curve $C : [0, 2] \rightarrow \mathbb{C}$ given by

$$
C(t) = \begin{cases} c_1(t) & \text{if } 0 \leq t \leq 1 \\ c_2(2-t) & \text{if } 1 \leq t \leq 2 \end{cases}
$$

is a closed piecewise C^1 curve

 \blacktriangleright Therefore, by assumption,

$$
0 = \int_C f(z) dz = \int_{c_1} f(z) dz + \int_{-c_2} f(z) dz = \int_{c_1} f(z) dz - \int_{c_2} f(z)
$$

It follows that the definition of $F(z)$ does not depend on the curve used $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$ Converse To Fundamental Theorem of Calculus (Part 3)

▶ If $z \in O$, then there exists $\delta > 0$ such that $D(z, \delta) \subset O$

▶ Given $h \in D(0, \delta)$, consider the curve

$$
c_h: [0,1] \to \mathbb{C}
$$

$$
t \mapsto z + th
$$

\n- For each
$$
t \in [0, 1]
$$
, $|c_h(t) - z| = |z + th - z| = t|h| < \delta$ and therefore, $c_h(t) \in D(z, \delta) \subset O$
\n- $c_h(0) = z$ and $c_h(1) = z + h$
\n

Converse To Fundamental Theorem of Calculus (Part 4)

▶ Therefore,

$$
\frac{F(z+h) - F(z)}{h} - f(z) = \frac{1}{h} \int_{c_h} f(w) dw - f(z)
$$

$$
= \frac{1}{h} \int_{t=0}^{t=1} f(c_h(t))c_h'(t) dt - f(z)
$$

$$
= \frac{1}{h} \int_{t=0}^{t=1} f(z+th)h dt - \int_{t=0}^{t=1} f(z) dt
$$

$$
= \int_{t=0}^{t=1} f(z+th) - f(z) dt
$$

イロト 不優 トメ 差 トメ 差 トー 差 QQ 10 / 25

Converse To Fundamental Theorem of Calculus (Part 4)

▶ Since f is continuous, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$
z+h\in D(z,\delta)\implies |f(z+h)-f(z)|<\epsilon
$$

It follows that if $|h| < \delta$,

$$
\left|\frac{F(z+h)-F(z)}{h}-f(z)\right|=\left|\int_{t=0}^{t=1}f(z+th)-f(z)\,dt\right|
$$

$$
\leq \int_{t=0}^{t=1}|f(z+th)-f(z)|\,dt
$$

$$
\leq \epsilon
$$

 \blacktriangleright It follows that

$$
F'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z)
$$

メロトメ 御 トメ 差 トメ 差 トー 差 11 / 25