MATH-GA2450 Complex Analysis Homotopic Curves Homotopy Forms of Cauchy's Theorem

Deane Yang

Courant Institute of Mathematical Sciences New York University

October 17 2024

1 / 170

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

Fundamental Theorem of Calculus for Holomorphic Functions

▶ Let $O \subset \mathbb{C}$ and $c : [a, b] \rightarrow O$ be a piecewise C^1 curve

▶ If $F: O \to \mathbb{C}$ is holomorphic, then

$$
\int_c F'(z) dz = F(c(b)) - F(c(a))
$$

▶ If $f: O \to \mathbb{C}$ is holomorphic and has an antiderivative F, then

$$
\int_c f(z) dz = F(c(b)) - F(c(a))
$$

 \blacktriangleright Proof.

$$
\int_{c} f(z) dz = \int_{t=a}^{t=b} f(c(t))c'(t) dt
$$

$$
= \int_{t=a}^{t=b} \frac{d}{dt} f(c(t)) dt
$$

$$
= f(c(b)) - f(c(a))
$$

 \triangleright \triangleright \triangleright Crucial ingredient: Chain rule f[or](#page-0-0) holomor[phi](#page-2-0)[c](#page-0-0) [fu](#page-1-0)n[ct](#page-0-0)[io](#page-0-1)[ns](#page-0-0)

2 / 170

Corollaries

▶ Let $f: O \to \mathbb{C}$ have an antiderivative $F: O \to \mathbb{C}$

Given piecewise C^1 curves

$$
c_1:[a_1,b_1]\rightarrow O \text{ and } c_2:[a_2,b_2]\rightarrow O
$$

such that

$$
c_1(a_1) = c_2(a_2) \text{ and } c_1(b_1) = c_2(b_2),
$$

the following holds:

$$
\int_{c_1} f(z) dz = \int_{c_2} f(z) dz
$$

▶ If $c : [a, b] \rightarrow O$ is closed, then

$$
\int_{c} f(z) dz = 0
$$

3 / 170

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇

Homotopy of Two Curves

- ► Let $O \subset \mathbb{C}$ be open
- ▶ Given continuous curves $c_0 : [a, b] \rightarrow O$ and $c_1 : [a, b] \rightarrow O$, a homotopy is a continuous map

$$
\mathcal{C}:[0,1]\times[a,b]\to O
$$

such that

$$
\forall t \in [a, b], C(0, t) = c_0(t) \text{ and } C(1, t) = c_1(t)
$$

If c_0 and c_1 have the same endpoints, i.e.,

$$
c_0(a) = c_1(a) \text{ and } c_0(b) = c_1(b),
$$

then they are **homotopic** if the exists a homotopy such that

$$
\forall s \in [0,1], C(s,a) = c_0(a) \text{ and } C(s,b) = c_0(b)
$$

 \triangleright Two continuous closed curves c_0 and c_1 are **homotopic** if

$$
\forall \mathsf{s} \in [0,1], \mathsf{C}(\mathsf{s}, \mathsf{a}) = \mathsf{C}(\mathsf{s}, \mathsf{b})
$$

▶ Whether two curves are homotopic or not depends on both イロメイ団 メイモメイモメー 毛 the curves and the codomain O 4 / 170

Smooth Homotopy of Continuous Curves

- ▶ We will assume the following without proof
- ▶ If c_0, c_1 : [a, b] \rightarrow O are homotopic, then there exists a homotopy

$$
C:[0,1]\times[a,b]\to\mathit{O}
$$

such that the following hold:

- ▶ C restricted to $(0,1) \times (a, b)$ is C^2
- \blacktriangleright There exists a constant $M > 0$ such that for any $(s, t) \in [0, 1] \times [a, b],$

$$
|\partial_{st}^2 C(s,t)| \leq M
$$

 \triangleright Below, we will always assume that a homotopy C satisfies these conditions

Examples

- ▶ A curve is homotopic to itself
- \blacktriangleright Any two curves in $\mathbb C$ are homotopic
- ▶ If O is connected and $z_0, z_1 \in O$, then the curves $c_0, c_1 : [a, b] \rightarrow O$ given by

$$
c_0(t)=z_0 \text{ and } c_1(t)=z_1
$$

are homotopic

 \triangleright Consider the curve c_0 : [0, 2π] → C given by

$$
c_0(t)=e^{it}
$$

- ▶ c₀ is homotopic to the constant curve $c_1 : [0, 2\pi] \rightarrow \mathbb{C}$ given by $c_1(t) = 0$
- \triangleright On the other hand, we will prove that the curve c_0 in $O = \mathbb{C}\backslash\{0\}$ is **not** homotopic to c_1 **KORK EXTERNS ORA**

Homotopy Forms of Cauchy's Theorem

▶ Theorem 1. If $O \subset \mathbb{C}$ is open, $f: O \to \mathbb{C}$ is holomorphic, and c_0, c_1 are homotopic piecewise C^1 curves with the same endpoints , then

$$
\int_{c_0} f(z) dz = \int_{c_1} f(z) dz
$$

Cauchy's Theorem for Homotopic Closed Curves

▶ Theorem 2. If $O \subset \mathbb{C}$ is open, $f: O \to \mathbb{C}$ is holomorphic, and

 $c_0, c_1 : [a, b] \rightarrow O$

are homotopic closed curves, then

$$
\int_{c_0} f(z) dz = \int_{c_1} f(z) dz
$$

8 / 170

メロトメ 御 トメ 差 トメ 差 トー 差

Proof of Theorems 1 and 2 (Part 1)

- ▶ Let $O \subset \mathbb{C}$ be open and $f: O \to \mathbb{C}$ be holomorphic
- ▶ Let c_0, c_1 : [a, b] \rightarrow O be homotopic curves and $C: [0,1] \times [a,b] \rightarrow O$ be a homotopy between them
- ▶ For each $s \in [0, 1]$, let

$$
I(s) = \int_{C(s,\cdot)} f(z) dz = \int_{t=a}^{t=b} f(C(s,t)) \partial_t C(s,t) dt
$$

▶ It is straightforward to show that $I : [0, 1] \rightarrow \mathbb{C}$ is continuous \blacktriangleright Also,

$$
I(0) = \int_{c_0} f(z) dz
$$
 and $I(1) = \int_{c_1} f(z) dz$

 \blacktriangleright To prove the theorems, it suffices to prove that for each $s \in (0,1)$, $I'(s) = 0$

Proof of Theorems 1 and 2 (Part 2)

 \blacktriangleright The assumptions on C imply that in the calculation below, the differentiation and integration can be interchanged:

$$
I'(s) = \partial_s \int_{t=a}^{t=b} f(C(s,t)) \partial_t C(s,t) dt
$$

=
$$
\int_{t=a}^{t=b} \partial_s (f(C(s,t)) \partial_t C(s,t)) dt
$$

 \blacktriangleright Key calculation

$$
\partial_s(f(C(s,t))\partial_t C(s,t))
$$
\n
$$
= f'(C(s,t))\partial_s C(s,t)\partial_t C(s,t) + f(C(s,t))\partial_s(\partial_t C(s,t))
$$
\n
$$
= f'(C(s,t))\partial_s C(s,t)\partial_t C(s,t) + f(C(s,t))\partial_t(\partial_s C(s,t))
$$
\n
$$
= \partial_t(f(C(s,t))\partial_s C(s,t))
$$

Proof of Theorem 1

$$
\blacktriangleright \text{ Assume that for each } s \in [0,1],
$$

$$
C(s, a) = c_0(a)
$$
 and
$$
C(s, b) = c_0(b)
$$

 \blacktriangleright It follows that

$$
\partial_{\color{red} {s}} \mathcal{C} (s,a) = \partial_{\color{red} {s}} \mathcal{C} (s,b) = 0
$$

and therefore $I'(s) = 0$

 \blacktriangleright This implies that

$$
\int_{c_0} f(z) dz = I(0) = I(1) = \int_{c_1} f(z) dz,
$$

which proves Theorem 1

メロトメ 御 トメ 君 トメ 君 トー 君 QQ 11 / 170

Proof of Theorem 2

 \triangleright Since c_0 and c_1 are closed, there exists, by assumption, a homotopy C between c_0 and c_1 such that for each $s \in [0, 1]$,

$$
C(s, a) = C(s, b) \text{ and } \partial_s C(s, a) = \partial_s C(s, b)
$$

 \blacktriangleright This implies that

$$
\int_{c_0} f(z) dz = I(0) = I(1) = \int_{c_1} f(z) dz,
$$

which proves Theorem 2

Explanation of Key Calculation

If f has an antiderivative F , then

$$
\partial_s(f(C(s,t))\partial_t C(s,t)) = \partial_s(\partial_t F(C(s,t)))
$$

= $\partial_t(\partial_s F(C(s,t)))$
= $\partial_t(f(C(s,t))\partial_s C(s,t))$

Cauchy's Theorem for Null-Homotopic Curve

▶ Definition. A closed curve $c : [0,1] \rightarrow O$ is null-homotopic if it is homotopic to a point $z_0 \in O$, i.e., there exists a homotopy $C : [0,1] \times [a,b] \rightarrow O$ such that for each $t \in [a,b]$,

 $C(0, t) = c(t)$ and $C(1, t) = z_0$

▶ Corollary. If $O \subset \mathbb{C}$ is open and $c : [a, b] \rightarrow O$ is null-homotopic, then for any holomorphic $f: O \to \mathbb{C}$,

$$
\int_{c} f(z) dz = 0
$$

14 / 170

▶ This follows directly by Theorem 2

Cauchy's Theorem For Simply Connected Domain

- ▶ An open $O \subset \mathbb{C}$ is simply connected if it is connected and any two curves with the same endpoints are homotopic
- \blacktriangleright Equivalently, O is simply connected if it is connected, and any closed curve in O is null-homotopic
- ▶ Theorem 3. If $O \subset \mathbb{C}$ is simply connected and open, $f: O \to \mathbb{C}$ is holomorphic, and $c_0, c_1 : [0, 1] \to \mathbb{C}$ are piecewise C^1 curves that are homotopic with fixed endpoints, then

$$
\int_{c_0} f(z) dz = \int_{c_1} f(z) dz
$$

or, equivalently, if $c : [0, 1] \rightarrow O$ is a closed curve, then

$$
\int_c f(z)\,dz=0
$$

15 / 170

Antiderivative of Holomorphic Function on Simply Connected Domain

- \triangleright Corollary. Any holomorphic function f on a simply connected domain O has an antiderivative $F: O \to \mathbb{C}$
- ▶ Proof. Let $z_0 \in \mathbb{C}$ and define $F: O \to \mathbb{C}$ by

$$
F(z)=\int_{c}f(z)\,dz,
$$

where $c:[0,1]\to O$ is a piecewise \mathcal{C}^1 curve such that $c(0) = z_0$ and $c(1) = z$

Logarithm Function Does Not Exist on $\mathbb{C}\backslash\{0\}$

▶ Definition. A logarithm function is an antiderivative of the function

$$
f(z)=\frac{1}{z}
$$

▶ There is no logarithm function on $\mathbb{C}\backslash\{0\}$, because if c is the unit circle, then

$$
\int_c \frac{dz}{z} = 2\pi i \neq 0
$$

17 / 170

メロトメ 御 トメ 差 トメ 差 トー 差

 \triangleright $\mathbb{C}\backslash\{0\}$ is not simply connected

Branch Cut

▶ Let

$$
\mathbb{C}\backslash[0,\infty)=\{x+iy: \ y\neq 0 \text{ or } x<0\}
$$

▶ $\mathbb{C}\setminus [0,\infty)$ is simply connected

 \blacktriangleright It follows that there exists a holomorphic function

$$
\mathsf{log} : \mathbb{C} \backslash [0,\infty) \to \mathbb{C}
$$

whose derivative is z^{-1}

- ▶ The same holds for $\mathbb{C}\setminus(-\infty,0]$, but the two logarithm functions are not the same
- ▶ The removed curves $[0, \infty)$ and $(-\infty, 0]$ are called **branch** cuts