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Cauchy Integral Formula on Convex Domain

▶ An open O ⊂ C is convex if for any z0, z ∈ O, the line
segment from z0 to z is also in O

▶ Corollary. If f : O → C is holomorphic, then for any z ∈ O
and piecewise C 1 closed curve c in O\{z},∫

c

f (w)

w − z
dw = 2πiW (c , z)f (z)
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Local Cauchy Integral Formula

▶ Let O ⊂ C be open

▶ Given any z0 ∈ O, there exists r > 0 such that D(z0, r) ⊂ O

▶ Let c : [0, 2π] → O\{z0} be the parameterization of ∂D(z0, r)
given by

c(t) = z0 + re it

▶ For each z ∈ D(z0, r), c is a star-shaped curve around z and
therefore

W (c , z) = 1

▶ It follows that if f : O → C is holomorphic, then

f (z) =
1

2πi

∫
c

f (w)

w − z
dw
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Derivatives of the Cauchy Integral Formula
▶ Differentiating

f (z) =
1

2πi

∫
c

f (w)

w − z
dw

with respect to z , we get

f ′(z) =
1

2πi

∫
c

f (w)

(w − z)2
dw

f ′′(z) =
2(1)

2πi

∫
c

f (w)

(w − z)3
dw

f (3)(z) =
3(2)(1)

2πi

∫
c

f (w)

(w − z)4
dw

...

f (k)(z) =
k!

2πi

∫
c

f (w)

(w − z)k+1
dw

▶ This implies that f is infinitely differentiable on O and
therefore has a Taylor series
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Holomorphic Implies Analytic

▶ Theorem. If O ⊂ C is open and f : O → C is holomorphic,
then f is analytic

▶ Recall that f is analytic if for each z0 ∈ O, there exists r > 0
and a power series

∞∑
k=0

ak(z − z0)
k

that converges absolutely on D(z0, r) and for each
z ∈ D(z0, r),

f (z) =
∞∑
k=0

ak(z − z0)
k

▶ If this holds, then

ak =
f (k)(z0)

k!
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Key Calculation

▶ Assume |w − z0| = r and |z − z0| < r

▶ Key estimate:

1

w − z
=

1

w − z0 − (z − z0)

=
1

w − z0

(
1

1− z−z0
w−z0

)

=
1

w − z0

(
1 +

z − z0
w − z0

+

(
z − z0
w − z0

)2

+ · · ·

)
▶ This series converges absolutely because∣∣∣∣ z − z0

w − z0

∣∣∣∣ = |z − z0|
r

< 1
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Proof that Holomorphic Implies Analytic (Part 1)
▶ Given z0 ∈ O, there exists r > 0 such that D(z0, r) ⊂ O
▶ Let c : [0, 2π] be a parameterization of ∂D(z0, r), e.g.,

c(t) = z0 + re it

▶ Given any z ∈ D(z0, r), by the local Cauchy integral formula
and the key calculation,

2πif (z) =

∫
c

f (w)

w − z
dw

=

∫
c

f (w)

w − z0

∞∑
k=0

(
z − z0
w − z0

)k

dw

=
∞∑
k=0

(z − z0)
k

∫
c

f (w)

(w − z0)k+1
dw

= 2πi
∞∑
k=0

f (k)(z0)

k!
(z − z0)

k
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Proof that Holomorphic Implies Analytic (Part 2)
▶ If z ∈ D(z0, r), then for each w ∈ ∂D(z0, r), the series

∞∑
k=0

(
z − z0
w − z0

)k

,

converges absolutely

▶ Since ∂D(z0, r) is compact, it follows that the series
converges uniformly with respect to w ∈ ∂D(z0, r)

▶ Therefore,
▶ The sum and integral can be swapped
▶ The resulting series also converges absolutely

▶ It follows that for any z ∈ D(z0, r),

f (z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)

k

▶ A function on an open O ⊂ C is holomorphic if and only if it
is analytic
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Radius of Convergence for an Analytic Function

▶ The proof also shows that if D(z0, r) ⊂ O, then the radius of
convergence for

f (z) =
k=∞∑
k=0

f (k)(z0)

k!
(z − z0)

k

is at least r

▶ Consider an analytic function

f (z) =
k=∞∑
k=0

ak(z − z0)
k

▶ If R > 0 is the radius of convergence of f , i.e., the largest R
for which the power series converges absolutely on D(z0,R),
then f cannot be extended as a holomorphic function to any
disk centered at z0 with larger radius
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Examples

▶ Let log : C\(−∞, 0] → C be the logarithm function with
log(1) = 0

▶ The radius of convergence of the Taylor series for log(z)
centered at z = 1 is 1

▶ The radius of convergence of the Taylor series for log(z)
centered at z = 2 is 2

▶ The radius of convergence of the Taylor series for log(z)
centered at z = i is

√
2

10 / 10


