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Bound on Derivatives of a Holomorphic Function

▶ Let f : O → C be holomorphic and D(z0, r) ⊂ O

▶ Let ∥f ∥r = sup{|f (z)| : z ∈ ∂D(z0, r)}
▶ If c(t) = z0 + re it , then∣∣∣∣∣ f (k)(z0)k!

∣∣∣∣∣ =
∣∣∣∣ 1

2πi

∫
c

f (z)

(z − z0)k+1
dz

∣∣∣∣
=

1

2π

∣∣∣∣∫ t=2π

t=0

f (c(t))

rk+1e i(k+1)t
ire it dt

∣∣∣∣
≤ 1

2π

∫ t=2π

t=0

|f (c(t))|
rk

dt

≤ ∥f ∥r
rk
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Liouville’s Theorem: A Bounded Entire Function is
Constant

▶ An entire function is a function that is holomorphic on all of C
▶ Examples

▶ Any polynomial p(z) = a0 + a1z + · · ·+ anz
n

▶ ep(z) for any polynomial p
▶ sin(z), cos(z)

▶ A function f is bounded if there exists C > 0 such that
|f (z)| ≤ C for all z in the domain of f

▶ Liouville’s Theorem. Any bounded entire function is a
constant function

▶ Proof. For each z0 ∈ C,
▶ If f is bounded by C , then for any r > 0, ∥f ∥r ≤ C
▶ Therefore, for any r > 0,

|f ′(z0)| ≤
∥f ∥r
rk

≤ C

rk
,

which implies f ′(z0) = 0
▶ Since this holds for every z0 ∈ C, f is constant

3 / 8



Fundamental Theorem of Algebra

▶ Corollary. Any nonconstant polynomial has at least one
complex root

▶ Fact. A nonconstant polynomial is unbounded
▶ If |z | > 1, then for any k ≥ 1, |z |k > |z | and therefore

|f (z)| =
∣∣∣∣anzn (b0

zn
+ · · ·+ bn−1

z
+ 1

)∣∣∣∣
≤ |an||z |n

(
1− |b0|+ · · ·+ |bn−1|

|z |

)
▶ Therefore, if

|z | > R > 2(|b0|+ · · ·+ |bn−1|),

then

|f (z)| > |an|
2

Rn
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Proof of Fundamental Theorem of Algebra
▶ Proof. Let f (z) = a0 + a1z + · · ·+ anz

n and

g(z) =
1

f (z)

▶ If n > 0, then there exists R > 0 such that

|z | > R =⇒ |f (z)| > 1

▶ If f has no roots, there exists c > 0 such that if |z | ≤ R, then

|f (z)| > c

▶ Therefore,

|g(z)| ≤ max

(
1,

1

c

)
▶ It follows that g is a bounded entire function and therefore

constant

▶ This implies that f is constant
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Orientation of a Curve
▶ A curve c is always a continuous parameterized curve

c : [a, b] → C

▶ Two nonconstant parameterized curves

c1 : [a1, b1] → C and c2 : [a2, b2] → C

parameterize the same curve if there exists a monotone
function

u : [a1, b1] → [a2, b2]

such that u(a1) = a2, u(b1) = b2, and, for each t ∈ [a1, b1],

c1(t) = c2(u(t))

▶ If f is increasing then the two curves have the same
orientation

▶ If f is decreasing then the two curves have opposite
orientations
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Reverse Orientation of Curve

▶ Given a curve c : [a, b] → C, the curve

(−c) : [b, a] → C
t 7→ c(t)

parameterizes the same curve but with the opposite
orientation

▶ If f is holomorphic on an open set containing c , then∫
−c

f (z) dz =

∫ t=a

t=b
f (c(t))c ′(t) dt

= −
∫ t=b

t=a
f (c(t))c ′(t) dt

= −
∫
c
f (z) dz
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Contour Integral of Oriented Curves
▶ If c1 : [a1, b1] → C and c2 : [a2, b2] → C parameterize the

same curve and have the same orientation, then for any
holomorphic f ,∫

c2

f (z) dz =

∫ u=b2

u=a2

f (c2(u))c
′
2(u) du

=

∫ t=b1

t=a1

f (c2(u(t)))c
′
2(u(t))u

′(t) dt

=

∫ t=b1

t=a1

f (c1(t))c
′
1(t) dt

=

∫
c1

f (z) dz

▶ A similar calculation shows that if c1 and c2 have opposite
orientations, then∫

c2

f (z) dz = −
∫
c1

f (z) dz
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