MATH-GA2450 Complex Analysis

Counting Zeros and Poles Evaluation of Definite Integrals

Deane Yang

Courant Institute of Mathematical Sciences New York University

November 26, 2024

Counting Zeros and Poles Inside Simple Closed Curve

- ▶ A closed curve $c : [a, b] \to \mathbb{C}$ is **simple** if for any $z \in \mathbb{C} \setminus c$, the winding number of c around z is 0 or 1
- We say z is inside c if W(c,z)=1
- ▶ Let $O \subset \mathbb{C}$ be open and f be a meromorphic function on O with zeros at a_1, \ldots, a_m and poles at b_1, \ldots, b_n inside c
- ▶ The multiplicity of f at z_0 is defined to be

$$\operatorname{mult}_{z_0} f = -\operatorname{ord}_{z_0} f$$

► Then

$$\int_{c} \frac{f'(z)}{f(z)} dx = 2\pi i (p_1 + \dots + p_m - (q_1 + \dots + q_n))$$

$$= 2\pi i ((\text{number of zeros}) - (\text{number of poles})),$$

where $p_i = \operatorname{ord}_{a_i} f$ and $q_k = \operatorname{mult}_{b_k} f$ and the numbers of zeros and poles are counted with multiplicity

Rouché's Theorem

- ▶ Let $c : [a, b] \rightarrow O$ be a simple closed curve in an open $O \subset \mathbb{C}$
- Let f, g be holomorphic functions on O
- ▶ If for any $z \in c$,

$$|f(z)-g(z)|<|f(z)|,$$
 (1)

then f and g have the same number of zeros inside c

Proof of Rouché's Theorem I

- ▶ Observe that (1) implies that neither f nor g have any zeros on c
- ▶ Let F = g/f
- ▶ For each $z \in c$,

$$|F(z)-1|=\frac{|f(z)-g(z)|}{|f(z)|}<1$$

and therefore $F(z) \in D(1,1)$

▶ It follows that

$$F \circ c : [a, b] \to \mathbb{C}$$

is a closed curve in D(1,1)

► Since $0 \notin D(1,1)$,

$$W(F \circ c, 0) = 0$$

Proof of Rouché's Theorem II

► Therefore,

$$0 = W(F \circ c, 0)$$

$$= \int_{F \circ c} \frac{dz}{z}$$

$$= \int_{t=a}^{t=b} \frac{(F \circ c)'(t)}{F \circ c(t)} dt$$

$$= \int_{t=a}^{t=b} \frac{F'(c(t))}{F \circ c(t)} c'(t) dt$$

$$= \int_{c} \frac{F'(z)}{F(z)} dz$$

$$= \int_{c} \frac{f'(z)}{f(z)} - \frac{g'(z)}{g(z)} dz$$

$$= (number of zeros of f) - (number of zeros of g)$$

Computation of Residues (Part 1)

▶ If f has a pole at z_0 and g is holomorphic at z_0 , then

$$\operatorname{\mathsf{Res}}_{z_0}(fg) = g(z_0)\operatorname{\mathsf{Res}}_{z_0}(f)$$

Observe that

$$f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \cdots$$

$$g(z) = b_0 + b_1(z - z_0) + \cdots$$

$$f(z)g(z) = (\frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \cdots)(b_0 + b_1(z - z_0) + \cdots)$$

$$= \frac{a_{-1}b_0}{z - z_0} + a_{-1}b_1 + a_0b_0 + (a_1b_0 + z_0b_1)(z - z_0) + \cdots$$

► Therefore, $Res_{z_0}(fg) = a_{-1}b_0 = (Res_{z_0}(f))g(z_0)$

Computation of Residues (Part 2)

▶ If f(z) is holomorphic at z_0 , $f(z_0) = 0$, and $f'(z_0) \neq 0$, then

$$\mathsf{Res}_{z_0}\left(\frac{1}{f(z)}\right) = \frac{1}{f'(z_0)}$$

- $f(z) = a_1(z z_0) + a_2(z z_0)^2 + \cdots$ and $a_1 \neq 0$
- ► Therefore.

$$\frac{1}{f(z)} = \frac{1}{a_1(z - z_0) + a_2(z - z_0)^2 + \cdots} \\
= \left(\frac{a_1^{-1}}{z - z_0}\right) \left(\frac{1}{1 + a_2 a_1^{-1}(z - z_0) + \cdots}\right) = f(z)g(z)$$

▶ By previous result,

$$\mathsf{Res}_{z_0}\left(rac{1}{f(z)}
ight) = \mathsf{Res}_{z_0}(f)g(z_0) = a_1^{-1} = rac{1}{f'(z_0)}$$

Evaluation of Real Integrals

Recall the definition of improper integrals:

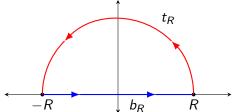
$$\int_{x=a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{x=a}^{x=b} f(x) dx$$
$$\int_{x=-\infty}^{x=b} f(x) dx = \lim_{a \to -\infty} \int_{x=a}^{x=b} f(x) dx$$

▶ The definition of a two-sided indefinite integral is

$$\int_{x=-\infty}^{x=\infty} f(x) \, dx = \int_{x=-\infty}^{x=0} f(x) \, dx + \int_{x=0}^{x=\infty} f(x) \, dx$$

► Some (but not all) such integrals can be computed using contour integrals

Computation of Improper Integral Using Contour Integral



- ▶ Suppose we want to compute $\int_{-\infty}^{\infty} f(x) dx$
- ► Suppose *f* be extended to a meromorphic function on the upper half-plane
- Let $c_R = (b_R, t_R)$ be the closed contour shown above
- ► If

$$\lim_{R\to\infty}\int_{z}f(z)\,dz=0,$$

then

$$\lim_{R \to \infty} \int_{C_R} f(z) dz = \lim_{R \to \infty} \int_{b_R} f(z) dz + \lim_{R \to \infty} \int_{u_{R}} f(z) dz$$

$$\int_{z=\infty} f(z) dz = \lim_{R \to \infty} \int_{b_R} f(z) dz + \lim_{R \to \infty} \int_{u_{R}} f(z) dz$$

Computation of Improper Integral Using Contour Integral

► If

$$\lim_{R\to\infty}\int_{t_0}f(z)\,dz=0,$$

then

$$\lim_{R \to \infty} \int_{c_R} f(z) dz = \lim_{R \to \infty} \int_{b_R} f(z) dz + \lim_{R \to \infty} \int_{u_R} f(z) dz$$
$$= \int_{x = -\infty}^{x = \infty} f(x) dx$$

▶ On the other hand, if f has finitely many poles z_1, \ldots, z_N in the open upper half-plane, then for sufficiently large R,

$$\int_{CR} f(z) dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}_{z_k} f$$

It follows that

$$\int_{x=-\infty}^{x=\infty} f(x) dx = \lim_{R \to \infty} \int_{C_R} f(z) dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}_{z_k} f$$

Example (Part 1)

- ► Consider the integral $\int_{x=-\infty}^{x=\infty} \frac{dx}{1+x^4}$
- ► Let $f(z) = \frac{1}{1 + z^4}$
- ▶ It follows that if $z = Re^{it}$, then $dz = iRe^{it} dt$ and therefore

$$\left| \int_{u_R} \frac{dz}{1+z^4} \right| = \left| \int_{t=0}^{t=\pi} \frac{iRe^{it}}{1+R^4e^{i4t}} dt \right|$$

$$\leq \int_{t=0}^{t=\pi} \frac{R}{R^4 - R} dt$$

$$\leq \frac{\pi}{R^3 - 1}$$

It follows that

$$\lim_{R \to \infty} \left| \int_{u_0} \frac{dz}{1 + z^4} \right| = \lim_{R \to \infty} \frac{\pi}{R^3 - 1} = 0$$

Example (Part 3)

► The poles of f are

$$e^{\frac{i\pi}{4}} = \frac{1+i}{\sqrt{2}}, e^{\frac{i3\pi}{4}} = \frac{-1+i}{\sqrt{2}}, e^{\frac{i5\pi}{4}} = \frac{-1-i}{\sqrt{2}}, e^{\frac{i7\pi}{4}} = \frac{1-i}{\sqrt{2}}$$

► The ones in the upper half-plane are

$$e^{\frac{i\pi}{4}} = \frac{1+i}{\sqrt{2}}, e^{\frac{i3\pi}{4}} = \frac{-1+i}{\sqrt{2}}$$

By the earlier result,

$$\operatorname{Res}_{z_0}\left(\frac{1}{1+z^4}\right) = \frac{1}{4z_0^3}$$

Therefore,

$$\int_{x=-\infty}^{x=\infty} \frac{dx}{1+x^4} = \lim_{R \to \infty} \int_{c_R} \frac{dz}{1+z^4} = 2\pi i \left(\frac{1}{4e^{\frac{i3\pi}{4}}} + \frac{1}{4e^{\frac{i9\pi}{4}}} \right)$$
$$= \pi i \left(e^{\frac{-i3\pi}{4}} + e^{\frac{-i9\pi}{4}} \right) = \pi i \left(\frac{-1-i}{\sqrt{2}} + \frac{1-i}{\sqrt{2}} \right)$$
$$= \pi \sqrt{2}$$