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Counting Zeros and Poles Inside Simple Closed Curve

» A closed curve c: [a, b] — C is simple if for any z € C\c, the

| 2
>

winding number of ¢ around z is 0 or 1

We say z is inside ¢ if W(c,z) =1

Let O C C be open and f be a meromorphic function on O
with zeros at ai,...,a, and poles at by, ..., b, inside ¢

The multiplicity of f at zj is defined to be
mult,, f = —ord, f

Then

= 27i((number of zeros) — (number of poles)),

where p; = ordy, f and gx = multy, f and the numbers of
zeros and poles are counted with multiplicity
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Rouché’'s Theorem

» Let c:[a, b] — O be a simple closed curve in an open O C C

» Let f, g be holomorphic functions on O
» If for any z € c,

f(2) — &(2)| < [f(2)],

then f and g have the same number of zeros inside ¢

3/12



Proof of Rouché’'s Theorem |

» Observe that (1) implies that neither f nor g have any zeros
on ¢

> Let F=g/f

» For each z € c,

f(z) — g(2)]
|F(z) - 1] =—S—%><1
|£(2)]
and therefore F(z) € D(1,1)
> It follows that
Foc:[ab]—C

is a closed curve in D(1,1)
» Since 0 ¢ D(1,1),
W(Foc,0)=0
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Proof of Rouché's Theorem |l

» Therefore,

0= W(Foc,0)

[
_Focz

[P (Fooy(h)
‘/t:a Foct)

t
P F(c(t)
—/t_a Foc(t)c(t)dt

_[F@,
‘/c Flo)
) &)

=[50 S0

= (number of zeros of f) — (number of zeros of g)

5/12



Computation of Residues (Part 1)

» If f has a pole at zp and g is holomorphic at z, then

Res,, (fg) = g(20) Res(f)

» Observe that
f(z) = 70 +ao +a1(z — z) +-

g(z) = bo + bi(z — z9) + - -
f(2)g(z) = (=

% +ao+21(2—20) )(b0+b1(2—20)+ )

b
= az i O) +a_1b1 + agby + (albo + Zobl)(z — Zo) + -

» Therefore, Res,,(fg) = a_1bo = (Res(f))g(20)
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Computation of Residues (Part 2)

» If (z) is holomorphic at zy, f(z) = 0, and f’'(z) # 0, then

> f(z) =a1(z—2z)+a(z—2)>+--- and a1 # 0
» Therefore,

1 1

f(z) B 31(2 — Zo) + 32(2 — 20)2 I

- <221120> <1+a2a;1(z1_zo)+...> = f(2)g(2)

> By previous result,

Res, (f(1)> = Ress (Fe(z0) = ai" = 7
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Evaluation of Real Integrals

» Recall the definition of improper integrals:

/XOO F(x) dx = lim /XXb F(x) dx

—a b—oo Jy—4

/XX:b f(x)dx = lim /X:bf(x)dx

=—00 a7 =0 Jx=a

» The definition of a two-sided indefinite integral is

X=00 x=0 X=00
/ f(x)dx:/ f(x)dx+/ f(x) dx
X=—00 X=—00 x=0
» Some (but not all) such integrals can be computed using

contour integrals
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Computation of Improper Integral Using Contour Integral

RN

-R br R
(o)
> Suppose we want to compute f(x) dx

—00
» Suppose f be extended to a meromorphic function on the
upper half-plane

» Let cg = (bg, tg) be the closed contour shown above
> If

lim / f(z)dz =0,
tr

R—o0

then

RIi_r}noo/CR f(z)dz_RJi_r>noo/bR f(z)dz—l—Rli_inoo/UR f(z)dz
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Computation of Improper Integral Using Contour Integral

> If
lim f(z)dz =0,
R—00 tr

then
li f(z)dz = li f(z)d li f(z)d
YTy gy P
:/ B f(x)dx

» On the other hand, if f has finitely many poles z,...,zy in
the open upper half-plane, then for sufficiently large R,

N
/ f(z)dz = 271/2 Res,, f
R k=1

» It follows that

X=00 N
/ f(x)dx = lim f(z)dz = ZWIZ Res,, f

-0 R—o0 cr —1
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Example (Part 1)

X=0 dx
» Consider the integral / 7]
X=—00 1+x

1
> Let f(Z) = ﬂ

» It follows that if z = Ret, then dz = iRe' dt and therefore

/ dz /f—” iRe™
up 14+ 24 =0 1+ R4ef4t

t=m R
< —dt
- /tO R* - R

» It follows that

l il
m —— =
R—o0 R3 -1

0

[im
R—o00

/ dz
up 1+ 2%
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Example (Part 3)
» The poles of f are
= 147 3z =147 iz —1—1i i 1—4
4 = 776 4 = =
v V2
» The ones in the upper half-plane are
14 BJ e
V2

f
1
ReSzO ( + Z4> = 473
» Therefore,

X=00 1 1
/X— 1+X4 Rinoo/ I<4e’34“ i 4e’94">

( —I437T+ —14977) <—1—I+1—I>
= TI\€ € =TTl

V2 V2
=12

e

-~

»\;-

e

» By the earlier result,
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