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Analytic Isomorphisms
▶ Theorem. If U ⊂ C is open and f : U → C is holomorphic

and injective, then for every z ∈ U,

f ′(z) ̸= 0

and the inverse map

f −1 : f (U) → U

is also holomorphic
▶ Such a map is called an analytic isomorphism
▶ If U,V ⊂ C are open, then they are analytically isomorphic

is there exists an analytic isomorphism

f : U → V

such that f (U) = V
▶ An analytic isomorphism f : U → U is an analytic

automorphism
▶ Let Aut(U) denote the space of all analytic isomorphisms
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Sketch of Proof

▶ For each z0 ∈ U, f is analytic and therefore has a power series

f (z) =
∑
k=n

ak(z − z0)
k

▶ If m > 1, then

f (z) = an(z−z0)
n(1+b1(z−z0)+b2(z−z0)

2+· · · ) ≃ an(z−z0)
n,

which is not injective
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Basic Properties of Analytic Isomorphisms
▶ If f : U → V and g : V → W are isomorphisms, then so is

g ◦ f : U → W

▶ If f : U → V is an isomorphisim, then so is

f −1 : V → U

▶ If f , g : U → V are isomorphisms, then there exists
h ∈ Aut(V ) such that

g = h ◦ f

▶ If U,V are isomorphic, there is a bijection

Aut(U) ⇄ Aut(V )

▶ In particular, if f : U → V is an isomorphism and g : U → U
is a map, then

g ∈ Aut(U) ⇐⇒ f ◦ g ◦ f −1 ∈ Aut(V )
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Aut(U) is a Group

▶ Group multiplication: f , g ∈ Aut(U) =⇒ f ◦ g ∈ Aut(U)

▶ Associativity: If f , g , h ∈ Aut(U), then

(f ◦ g) ◦ h = f ◦ (g ◦ h)

▶ Identity element: The map I : U → U given by

I (z) = z

is an isomorphism such that for any f ∈ Aut(U),
f ◦ I = I ◦ f = f

▶ Inverse element: For any f ∈ Aut(U), f −1 ∈ Aut(U)
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Riemann Mapping Theorem

▶ Let D = D(0, 1)

▶ Let U ⊊ C be open

▶ Theorem. There exists an analytic isomorphism

f : U → D

▶ Corollary. If U,V ⊊ C are open, then they are analytically
isomorphic
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Upper Half-Plane is Isomorphic to Disk (Part 1)
▶ The upper half-plane is

H = {x + iy ∈ C : y > 0}

▶ Theorem. The map

f (z) =
z − i

z + i

is an analytic isomorphism from H to D

▶ Observe that

f (x + iy) =
x + i(y − 1)

x + i(y + 1)

▶ If y > 0, then (y − 1)2 < (y + 1)2 and therefore

|f (x + iy)|2 = |x + i(y − 1)|2

x + i(y + 1)|2
=

x2 + (y − 1)2

x2 + (y + 1)2
< 1

▶ Therefore, f (H) ⊂ D
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Upper Half-Plane is Isomorphic to Disk (Part 2)

▶ If

w =
z − i

z + i
,

then
wz + iw = z − i

and therefore

z = i
1 + w

1− w
= i

(1 + w)(1− w̄)

|1− w |2
= i

1− |w |2 + w − w̄

|1− w |2

▶ If w ∈ D, then 1− |w |2 > 0 and therefore the imaginary part
of z is

im(z) =
1− |w |2

|1− w |2
> 0

▶ It follows that f −1(D) ⊂ H

▶ This implies that f (H) = D and f −1(D) = H
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Analytic Isomorphism from First Quadrant to Disk

▶ Let
Q = {x + iy : x , y > 0}

▶ Observe that the map g(z) = z2 is an analytic isomorphism
from Q to H

▶ Therefore, if f : H → D is the analytic isomorphism from
above, then the map

f ◦ g(z) = f (z2) =
z2 − i

z2 + i

is an analytic isomorphism from Q to D
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Automorphisms of Disk: Rotations

▶ A basic question is what are the analytic automorphisms of
the unit disk?

▶ Given ϕ ∈ R, the function Rϕ : D → D given by

R(z) = e iϕz

is an analytic isomorphism of D that rotates each z
counterclockwise by angle ϕ
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Automorphisms of Disk: Rescale Upper Half Plane

▶ Given any ρ ∈ (0,∞), the function Sρ : H → H given by

Sρ(z) = ρz

is an isomorphism of H that rescales each z by a factor of ρ

▶ This defines an isomorphism of D given by

f ◦ Sρ ◦ f −1(z) = f ◦ Sρ
(
i
1 + z

1− z

)
= f

(
iρ
1 + z

1− z

)
=

iρ1+z
1−z − i

iρ1+z
1−z + i

=
ρ(1 + z)− (1− z)

ρ(1 + z) + 1− z

=
(ρ+ 1)z + ρ− 1

(ρ− 1)z + ρ+ 1
=

z + α

1 + αz
,

where α ∈ (0, 1)
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Automorphisms of Disk: Shift Upper Half Plane

▶ Given any t ∈ R, the function Tt : H → H given by

Tt(z) = z − t

is an isomorphism of H that shifts each z horizontally by t

▶ This defines an isomorphism of D given by

f ◦ Tt ◦ f −1(z) = f ◦ Tt

(
i
1 + z

1− z

)
= f

(
i
1 + z

1− z
− t

)
= f

(
i(1 + z)− t(1− z)

1− z

)
=

(i−t)z+i−t
1−z − i

(i−t)z+i−t
1−z + i

=
(i − t)z + i − t − i(1− z)

(i − t)z + i − t + i(1− z)
=

(2i − t)z − t

−tz + 2i − t

=
2i − t

2i − t

(
z − α

1− ᾱz

)
, α =

t

2i − t
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Analytic Function Not Injective at Critical Point (Part 1)

▶ Recall that if f (z) = (z − z0)
n, then for any r > 0 and

0 ≤ k ≤ n − 1,

z1 = e
i2π
n , . . . , zn−1 = e

2π(n−1)
n

are n distinct values such that

f (z0 + re
i2π
n ) = rn

and therefore if n ≥ 2, f is not injective for any D(z0, r)
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Analytic Function Not Injective at Critical Point (Part 2)

▶ Let O ⊂ C be open and f : O → C be holomorphic

▶ Theorem. If z0 ∈ O is a critical point of f , then for any
r > 0, f : D(z0, r) → C is not injective
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Proof (Part 1)
▶ For simplicity, assume that f (z0) = a0 = 0

▶ Since f ′(z0) = 0,

f (z) =
∞∑
k=2

ak(z − z0)
k

▶ If, for every k ≥ 2, ak = 0, then f is constant and therefore
not injective

▶ Can therefore ssume there exists n ≥ 2 such that an ̸= 0 and

f (z) =
∞∑
k=n

ak(z − z0)
k

= an(z − z0)
n

(
1 +

∑
k=1

bn+k(z − z0)
k

)
,

where bn+k = an+k

an
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Proof (Part 2)

▶ There exists R0 > 0 be such that D(z0,R0) ⊂ O and for all
z ∈ D(z0,R0), ∣∣∣∣∣∑

k=1

bn+k(z − z0)
k

∣∣∣∣∣ < 1

2

▶ Therefore, for any z ∈ ∂D(z0,R0)

1

2
|an||z − z0| ≤ |f (z)| ≤ |an||z − z0|n
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Proof (Part 3)

▶ Since f ′(z0) = 0 and is analytic, it has a power series

f ′(z) = (z − z0)
∑
k=0

ck(z − z0)
k

and therefore there exists c ′ ≥ 0 such that

|f ′(z)| ≤ c ′|z − z0|k
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Proof (Part 4)

▶ For any 0 < r < R, there exists z1 ∈ D(z0, r) such that

f ′(z1) ̸= 0

Otherwise, f is constant on D(z0, r) and therefore not
injective

▶ On the other hand, since for any z ∈ D(z0,R),

|f (z)| > 1

2
|an||z − z0|n,

the only zero of f in D(z0,R) is z0 and

n =

∫
∂D(z0,R)

f ′(z)

f (z)− f (z0)
dz
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Proof (Part 5)

▶ If g(z) = f (z)− f (z1), then

f (z) = f (z1) ⇐⇒ g(z) = 0

▶ If N is the number of zeros in D(z0,R) of g(z), then

2πiN =

∫
∂D(z0),R)

g ′(z)

g(z)
dz =

∫
∂D(z0),R)

f ′(z)

f (z)− f (z1)
dz

▶ Observe that since |z1 − z0| = r , if z ∈ ∂D(z0,R) and

r <
1

41/n
R,

|f (z)− f (z1)| ≥ |f (z)| − |f (z1)| ≥ |an|
(
1

2
Rn − rn

)
≥ 1

4
Rn

19 / 20



Proof (Part 6)
▶ Therefore,

|2πi(N − n)| =

∣∣∣∣∣
∫
∂D(z0,R)

f ′(z)

f (z)− f (z1)
− f ′(z)

f (z)
dz

∣∣∣∣∣
≤
∫
∂D(z0,R)

∣∣∣∣ f ′(z)f (z)

∣∣∣∣ ∣∣∣∣ f (z1)

f (z)− f (z1)

∣∣∣∣ dz
≤ 2πr

c ′Rn

1
2 |an|Rn

|an|rn
1
4 |an|Rn

=
8πrn+1

Rn

▶ Since this holds for any r < R, follows that N = n

▶ Since N = n ≥ 1 and the order of the zero at z1 is 1, the
number of distinct zeros of g has to be at least 2

▶ It follows that f is not injective on D(z0, r) for any r > 0 such
that D(z0, r) ⊂ O
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